Молекулярно-генетические предикторы развития злокачественных новообразований при сахарном диабете 2-го типа

Беляева И.А., Овсянникова А.К., Зубарева Д.Ю., Рымар О.Д. Молекулярно-генетические предикторы развития злокачественных новообразований при сахарном диабете 2-го типа. FOCUS Эндокринология. 2021; 1: 56–59. DOI: 10.47407/ef2021.2.1.0025

Belyaeva I.A., Ovsyannikova A.K., Zubareva D.Yu., Rymar O.D. Molecular-genetic predictors of malignant neoplasms in type 2 diabetes mellitus. FOCUS Endocrinology. 2021; 1: 56–59. DOI: 10.47407/ef2021.2.1.0025

В обзоре обсуждаются вопросы, связанные с ассоциацией сахарного диабета 2-го типа (СД 2) и злокачественных новообразований. Приведены данные многоцентровых исследований США, Китая, Канады о повышенном риске злокачественных новообразований у лиц с СД 2, выявлены возможные механизмы их совместного развития. Рассмотрены рак молочной железы, рак поджелудочной железы, колоректальный рак, холангиокарцинома, рак мочевыводящих путей как наиболее частые локализации злокачественных новообразований у лиц с СД 2. Обсуждены проблемы и перспективы разработки общих генетических маркеров в развитии данных нозологий. Проблема взаимоотягощения СД 2 и злокачественных новообразований изучается давно, показана высокая корреляция между этими двумя на первый взгляд не связанными патологиями. Гиперинсулинемия, хроническое воспаление и гипергликемия, часто наблюдаемые у лиц с СД 2, могут привести к увеличению роста опухоли.

Ключевые слова: сахарный диабет 2-го типа, злокачественные новообразования, генетические предикторы, рак молочной железы, рак поджелудочной железы, колоректальный рак, холангиокарцинома, рак мочевыводящих путей.

Беляева Ирина Александровна - мл. науч. сотр. сектора изучения моногенных форм распространенных заболеваний человека, ФГБНУ ФИЦ «Институт цитологии и генетики» СО РАН
Овсянникова Алла Константиновна - канд. мед. наук, ст. науч. сотр. лаборатории клинико-популяционных исследований терапевтических и эндокринных заболеваний, НИИТПМ – филиал ИЦиГ СО РАН. E-mail: aknikolaeva@bk.ru
Зубарева Дарья Юрьевна - студент 5 курса медицинского факультета, ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет»
Рымар Оксана Дмитриевна - д-р мед. наук, глав. науч. сотр. с возложением обязанностей зав. лаб. клинико-популяционных исследований терапевтических и эндокринных заболеваний, НИИТПМ – филиал ИЦиГ СО РАН

1.    Hope C, Robertshaw A, Cheung K L et al. Relationship Between HbA1c and Cancer in People With or Without Diabetes: A Systematic Review. Diabet Med 2016; 33 (8): 1013–25. DOI: 10.1111/dme.13031

2.    Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev 2015; 95 (3): 727–48. DOI: 10.1152/physrev.00030.2014

3.    Chowdhury TA, Jacob P. Challenges in the Management of People With Diabetes and Cancer. Diabet Med 2019; 36 (7): 795–802. DOI: 10.1111/dme.13919

4.    Warburg O. On the origin of cancer cells. Science 1956; 123 (3191): 309–14. DOI: 10.1126/science.123.3191.309

5.    Li W, Zhang X, Sang H et al. Effects of hyperglycemia on the progression of tumor diseases. J Exp Clin Cancer Res 2019; 38 (1): 327. DOI: 10.1186/s13046-019-1309-6

6.    Joshi S, Liu M, Turner N. Diabetes and its link with cancer: providing the fuel and spark to launch an aggressive growth regime. Biomed Res Int 2015; 2015: 390863. DOI: 10.1155/2015/390863

7.    Hou Y, Zhou M, Xie J et al. High glucose levels promote the proliferation of breast cancer cells through GTPases. Breast Cancer (Dove Med Press) 2017; 9: 429–36. DOI: 10.2147/BCTT.S135665

8.    Hardefeldt PJ, Edirimanne S, Eslick GD. Diabetes increases the risk of breast cancer: a meta-analysis. Endocrine-Related Cancer 2012; 19:793–803. DOI: 10.1530/ERC-12-0242

9.    Linkeviciute-Ulinskiene D, Patasius A, Zabuliene L et al. Increased Risk of Site-Specific Cancer in People with Type 2 Diabetes: A National Cohort Study. Int J Environ Res Public Health 2020; 17 (1): 246. DOI: 10.3390/ijerph17010246

10   Liao S, Li J, Wei W et al. Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev 2011; 12 (4): 1061–5.

11. Yuasa K, Aoki N, Hijikata T. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4-Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes. Exp Cell Res 2015; 336 (2): 287–97. DOI: 10.1016/j.yexcr.2015.06.009

12. De Souza A, Irfan K, Masud F, Saif MW. Diabetes Type 2 and Pancreatic Cancer: A History Unfolding. JOP 2016; 17 (2): 144–8.

13. Ben Q, Xu M, Ning X et al. Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer 2011; 47 (13): 1928–37. DOI: 10.1016/j.ejca.2011.03.003

14. Grote VA, Rohrmann S, Nieters A et al. Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Diabetologia 2011; 54 (12): 3037–46. DOI: 10.1007/s00125-011-2316-0

15. Gonzalez N, Prieto I, Del Puerto-Nevado L et al. 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget 2017; 8 (11): 18456–85. DOI: 10.18632/oncotarget.14472

16. Zhu B, Wu X, Wu B et al. The relationship between diabetes and colorectal cancer prognosis: A meta-analysis based on the cohort studies. PLoS One 2017; 12 (4): e0176068. DOI: 10.1371/journal.pone.0176068

17. Pang Y, Kartsonaki C, Guo Y et al. Diabetes, plasma glucose and incidence of colorectal cancer in Chinese adults: a prospective study of 0.5 million people. J Epidemiol Community Health 2018; 72: 919–25. DOI: 10.1136/jech-2018-210651

18. Vigneri PG, Tirrò E, Pennisi MS et al. The insulin/IGF system in colorectal cancer development and resistance to therapy. Front Oncol 2015; 5: 230. DOI: 10.3389/fonc.2015.00230

19. Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J National Cancer Institute 2005; 97 (22): 1679–87. DOI: 10.1093/jnci/dji375

20. Xu Y, Huo R, Chen X, Yu X. Diabetes mellitus and the risk of bladder cancer: A PRISMA-compliant meta-analysis of cohort studies. Medicine (Baltimore) 2017; 96 (46): e8588. DOI: 10.1097/MD.0000000000008588

21. Tai YS, Chen CH, Huang CY et al. Diabetes mellitus with poor glycemic control increases bladder cancer recurrence risk in patients with upper urinary tract urothelial carcinoma. Diabetes Metab Res Rev 2015; 31 (3): 307–14. DOI: 10.1002/dmrr.2614

22. Russo P. End stage and chronic kidney disease: associations with renal cancer. Front Oncol 2012; 2: 28. DOI: 10.3389/fonc.2012.00028

23. El-Mosalamy H, Salman TM, Ashmawey AM, Osama N. Role of chronic E. coli infection in the process of bladder cancer—an experimental study. Infectious Agents and Cancer 2012; 7: 19. DOI: 10.1186/1750-9378-7-19

24. Huang YJ, Wu AT, Chiou HY et al. Interactive role of diabetes mellitus and female sex in the risk of cholangiocarcinoma: A population-based nested case-control study. Oncotarget 2017; 8 (4): 6642–51. DOI: 10.18632/oncotarget.14254

25. Rousseau MC, Parent ME, Pollak MN, Siemiatycki J. Diabetes mellitus and cancer risk in a population-based case-control study among men from Montreal, Canada. Int J Cancer 2006; 118 (8): 2105–09. DOI: 10.1002/ijc.21600

26. Li J, Han T, Xu L, Luan X. Diabetes mellitus and the risk of cholangiocarcinoma: an updated meta-analysis. Prz Gastroenterol 2015; 10 (2): 108–17. DOI: 10.5114/pg.2015.49004

27. Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Annals NY Acad Scien 2010; 1212: 59–77. DOI: 10.1111/j.1749-6632.2010.05838.x

28. Sanghera DK, Blackett PR. Type 2 Diabetes Genetics: Beyond GWAS. J Diabetes Metab 2012; 3 (198): 6948. DOI: 10.4172/2155-6156.1000198

29. Dmitriev AA, Kashuba VI, Haraldson K et al. Genetic and epigenetic analysis of non-smallcell lung cancer with NotI-microarrays. Epigenetics 2012; 7 (5): 502–13. DOI: 10.4161/epi.19801

30. Samuel SM, Varghese E, Varghese S, Büsselberg D. Challenges and perspectives in the treatment of diabetes associated breast cancer. Can Treat Rev 2018; 70: 98–111. DOI: 10.1016/j.ctrv.2018.08.004

31. Zeggini E, Scott LJ, Saxena R et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40 (5): 638–45. DOI: 10.1038/ng.120

32. Zhu N, Hou J, Wu Y et al. Integrated analysis of a competing endogenous RNA network reveals key lncRNAs as potential prognostic biomarkers for human bladder cancer. Medicine (Baltimore) 2018; 97 (35): e11887. DOI: 10.1097/MD.0000000000011887

33. Dubail J, Aramaki‐Hattori N, Bader HL et al. A new Adamts9 conditional mouse allele identifies its non‐redundant role in interdigital web regression. Genesis 2014; 52 (7): 702–12. DOI: 10.1002/dvg.22784

34. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet 2016; 388 (10039): 73–85. DOI: 10.1016/S0140-6736(16)00141-0

35. Xing X, Cai W, Shi H et al. The prognostic value of CDKN2A hypermethylation in colorectal cancer: a meta-analysis. Br J Cancer 2013; 108 (12): 2542–8. DOI: 10.1038/bjc.2013.251

36. Lima EM, Leal MF, Burbano RR et al. Methylation status of ANAPC1, CDKN2A and TP53 promoter genes in individuals with gastric cancer. Braz J Med Biol Res 2008; 41 (6): 539–43. DOI: 10.1590/s0100-879x2008000600017

37. Zhou Y, Wang XB, Qiu XP et al. CDKN2A promoter methylation and hepatocellular carcinoma risk: A meta-analysis. Clin Res Hepatol Gastroenterol 2018; 42 (6): 529–541. DOI: 10.1016/j.clinre.2017.07.003

38. Yan Y, Hu F, Wu W et al. Expression characteristics of proteins of IGF-1R, p-Akt, and survivin in papillary thyroid carcinoma patients with type 2 diabetes mellitus. Medicine (Baltimore) 2017; 96 (12): e6393. DOI: 10.1097/MD.0000000000006393

39. Tamimi RM, Colditz GA, Wang Y et al. Expression of IGF1R in normal breast tissue and subsequent risk of breast cancer. Breast Cancer Res Treat 2011; 128 (1): 243–50. DOI: 10.1007/s10549-010-1313-1

40. Jiang H, Wang H, Ge F et al. The Functional Variant in the 3'UTR of IGF1 with the Risk of Gastric Cancer in a Chinese Population. Cell Physiol Biochem 2015; 36 (3): 884–92. DOI: 10.1159/000430263

41. Ahearn TU, Peisch S, Pettersson A et al. Transdisciplinary Prostate Cancer Partnership (ToPCaP). Expression of IGF/insulin receptor in prostate cancer tissue and progression to lethal disease. Carcinogenesis 2018; 39 (12): 1431–7. DOI: 10.1093/carcin/bgy112

42. Rasheed MA, Kantoush N, Abd El-Ghaffar N et al. Expression of JAZF1, ABCC8, KCNJ11and Notch2 genes and vitamin D receptor polymorphisms in type 2 diabetes, and their association with microvascular complications. Ther Adv Endocrinol Metab 2017; 8 (6): 97–108. DOI: 10.1177/2042018817708910

43. Chu D, Zheng J, Wang W et al. Notch2 expression is decreased in colorectal cancer and related to tumor differentiation status. Ann Surg Oncol 2009; 16 (12): 3259–66. DOI: 10.1245/s10434-009-0655-6

44. Fu YP, Edvardsen H, Kaushiva A, Arhancet JP. NOTCH2 in breast cancer: association of SNP rs11249433 with gene expression in ER-positive breast tumors without TP53 mutations. Mol Cancer 2010; 9: 113. DOI: 10.1186/1476-4598-9-113

45. Mazur PK, Einwächter H, Lee M et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 2010; 107 (30): 13438–43. DOI: 10.1073/pnas.1002423107