Распространенность хронической болезни почек (ХБП) прогрессивно увеличивается с каждым годом в первую очередь за счет когорты пациентов с сахарным диабетом 2-го типа (СД 2). Следовательно, все пациенты с СД 2 должны проходить регулярный скрининг ХБП путем определения соотношения альбумин/креатинин в разовой порции мочи и расчета скорости клубочковой фильтрации. После подтверждения ХБП пациенты с СД 2 должны получать комплексное лечение, направленное на стабилизацию показателей гликемии, артериального давления, липидов крови. Также все пациенты с СД 2 и ХБП должны получать нефропротективную терапию, направленную на предупреждение прогрессирования ХБП. К основным нефропротективным препаратам относят ингибиторы ангиотензинпревращающего фермента и блокаторы рецепторов ангиотензина-2. Однако в последнее десятилетие появились группы сахароснижающих препаратов, которые также обладают нефропротективными свойствами: ингибиторы натрий-глюкозного котранспортера 2-го типа и агонисты рецепторов глюкагоноподобного пептида-1. Данные группы препаратов не только позволяют приостановить прогрессирование ХБП у больных СД 2, но и определяют возможность эффективного контроля гликемии без риска развития гипогликемических состояний, распространенность которых существенно увеличивается у пациентов со сниженной почечной функцией. Однако большинство пациентов с СД 2 и ХБП в настоящее время не получают адекватное комплексное лечение, в том числе нефропротективными препаратами. Это создает предпосылки для увеличения доли пациентов с поздними стадиями ХБП, почечными осложнениями и сердечно-сосудистыми катастрофами. Таким образом, подбор комплексного лечения пациентов с СД 2 и ХБП является существенной междисциплинарной проблемой, с которой сталкиваются эндокринологи, терапевты, нефрологи.
Ключевые слова: хроническая болезнь почек, сахарный диабет 2-го типа, альбуминурия, скорость клубочковой фильтрации, нефропротективные препараты, ингибиторы натрий-глюкозного котранспортера 2-го типа, агонисты рецепторов глюкагоноподобного пептида-1.
1. Смирнов А.В., Шилов Е.М., Добронравов В.А. и др. Национальные рекомендации. Хроническая болезнь почек: основные принципы скрининга, диагностики, профилактики и подходы к лечению. Нефрология. 2012; 16 (1): 89–115. DOI: 10.24884/1561-6274-2012-16-1-89-115
[Smirnov A.V., Shilov E.M., Dobronravov V.A. et al. Natsional'nye rekomendatsii. Khronicheskaia bolezn' pochek: osnovnye printsipy skrininga, diagnostiki, pro-filaktiki i podkhody k lecheniiu. Nefrologiia. 2012; 16 (1): 89–115. DOI: 10.24884/1561-6274-2012-16-1-89-115 (in Russian).]
2. Saran R, Robinson B, Abbott KC et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 2020; 75 (1 Suppl. 1): A6–A7. DOI: 10.1053/j.ajkd.2019.09.003
3. Sui Z, Wang J, Cabrera C et al. Aetiology of chronic kidney disease and risk fac-tors for disease progression in Chinese subjects: A single-centre retrospective study in Beijing. Nephrology (Carlton) 2020; 25 (9): 714–22. DOI: 10.1111/nep.13714
4. Шамхалова М.Ш., Викулова О.К., Железнякова А.В. и др. Эпидемиология хронической болезни почек в Российской Федерации по данным Федерального регистра взрослых пациентов с сахарным диабетом (2013–2016 гг.). Сахарный диабет. 2018; 21 (3): 160–9 DOI: 10.14341/DM9392
[Shamkhalova M.Sh., Vikulova O.K., Zhelezniakova A.V. et al. Epidemiologiia khronicheskoi bolezni pochek v Rossiiskoi Federatsii po dannym Federal'nogo registra vzroslykh patsientov s sakharnym diabetom (2013–2016 gg.). Sakharnyi diabet. 2018; 21 (3): 160–9 DOI: 10.14341/DM9392 (in Russian).]
5. Aboelnasr SM, Shaltout AK, Ramadan AlSheikh M et al. Diabetic kidney disease in patients newly diagnosed with type-2 diabetes mellitus: Incidence and asso-ciations. Saudi J Kidney Dis Transpl 2020; 31 (1): 191–9. DOI: 10.4103/1319-2442.279940
6. Sharma M, Parry MA, Jeelani H et al. Prevalence of Nondiabetic Renal Disease in Patients with Type 2 Diabetes Mellitus with Clinicopathological Correlation: A Study from a Tertiary Care Center of Assam, India. Saudi J Kidney Dis Transpl 2020; 31 (4): 831–9. DOI: 10.4103/1319-2442.292318
7. Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализи-рованной медицинской помощи больным сахарным диабетом. Мини-стерство здравоохранения и социального развития Российской Федера-ции, 2019. Сахарный диабет. 2019; 22 (S1). DOI: 10.14341/DM221S1
[Dedov I.I., Shestakova M.V., Maiorov A.Iu. et al. Algoritmy spetsializirovannoi meditsinskoi pomoshchi bol'nym sakharnym diabetom. Ministerstvo zdravookhraneniia i sotsial'nogo razvitiia Rossiiskoi Federatsii, 2019. Sakharnyi diabet. 2019; 22 (S1). DOI: 10.14341/DM221S1 (in Russian).]
8. American Diabetes Association. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes−2020. Diabetes Care 2020; 43 (Supple-ment 1): S135–S151. DOI:
https://doi.org/10.2337/dc20-S011
9. Glassock RJ. Is the Presence of Microalbuminuria a Relevant Marker of Kidney Disease? Curr Hypertens Rep 2010; 12 (5): 364–8. DOI: 10.1007/s11906-010-0133-3
10. Kyriakos Ioannou. Diabetic nephropathy: is it always there? Assumptions, weaknesses and pitfalls in the diagnosis. Hormones 2017, 16 (4): 351–61. DOI: 10.14310/horm.2002.1755
11. Jun M, Ohkuma T, Zoungas S et al. Changes in Albuminuria and the Risk of Ma-jor Clinical Outcomes in Diabetes: Results From ADVANCE-ON. Diabetes Care 2018; 41 (1): 163–70.
https://DOI.org/10.2337/dc17-1467
12. Heerspink H, Greene T, Tighiouart H et al. Change in albuminuria as a surro-gate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diab Endocrinol 2019; 7 (2): 128–
39. DOI: 10.1016/S2213-8587(18)30314-0
13. Koye D, Magliano D, Reid C et al. Risk of Progression of Nonalbuminuric CKD to End-Stage Kidney Disease in People With Diabetes: The CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis 2018; 72 (5): 653–61. DOI: 10.1053/j.ajkd.2018.02.364
14. Bramlage P, Lanzinger S, van Mark G et al. Patient and disease characteristics of type-2 diabetes patients with or without chronic kidney disease: an analysis of the German DPV and DIVE databases. Cardiovasc Diabetol 2019; 18: 33. DOI: 10.1186/s12933-019-0837-x
15. Kume Sh, Araki Sh-I, Ugi S et al. Secular changes in clinical manifestations of kidney disease among Japanese adults with type 2 diabetes from 1996 to 2014. J Diabetes Investig 2019; 10 (4): 1032–40. DOI: 10.1111/jdi.12977
16. Bailey RA, Wang Y, Zhu V et al. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes 2014; 7: 415. DOI: 10.1186/1756-0500-7-415
17. Pugliese G, Penno G, Natali A et al. Diabetic kidney disease: new clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on “The natural history of diabetic kidney dis-ease and treatment of hyperglycemia in patients with type 2 diabetes and im-paired renal function”. J Nephrol 2020; 33 (1): 9–35. DOI: 10.1007/s40620-019-00650-x
18. Oliveira E, Cheung W, Toma K et al. Muscle wasting in chronic kidney disease. Pediatr Nephrol 2018; 33 (5): 789–98. DOI: 10.1007/s00467-017-3684-6
10. Perkins BA et al. Detection of Renal Function Decline in Patients with Diabetes and Normal or Elevated GFR by Serial Measurements of Serum Cystatin C Con-centration: Results of a 4-Year Follow-Up Study. J Am Soc Nephrol 2005; 16 (5): 1404–12.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766097/
20. Wang Y, Zhang J, Teng G et al. Comparison of Performance of Equations for Es-timated Glomerular Filtration Rate in Chinese Patients with Biopsy-Proven Di-abetic Nephropathy. Dis Markers 2019; 2019: 4354061. DOI: 10.1155/ 2019/4354061
21. Levin A, Stevens P, Bilous R et al. KGIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidn int Suppl 2013; 3: 126–50. DOI: 10.1038/kisup.2012.48
22. Kravets I, Mallipattu S. The Role of Podocytes and Podocyte-Associated Biomarkers in Diagnosis and Treatment of Diabetic Kidney Disease. J Endocr Soc 2020; 4 (4): bvaa029. DOI: 10.1210/jendso/bvaa029
23. Jim B, Ghanta M, Qipo A et al. Dysregulated Nephrin in Diabetic Nephropathy of Type 2 Diabetes: A Cross Sectional Study. PLoS One 2012; 7 (5): e36041. DOI: 10.1371/journal.pone.0036041
24. Wada Y, Abe M, Moritani H et al. Original Research: Potential of urinary nephrin as a biomarker reflecting podocyte dysfunction in various kidney dis-ease models. Exp Biol Med (Maywood) 2016; 241 (16): 1865–76. DOI: 10.1177/1535370216651937
25. Refaeli I, Hughes M, Ka-Wai Wong A et al. Distinct Functional Requirements for Podocalyxin in Immature and Mature Podocytes Reveal Mechanisms of Human Kidney Disease. Sci Rep 2020; 10: 9419. DOI: 10.1038/s41598-020-64907-3
26. Hara M, Yamagata K, Tomino Y et al. Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes: establishment of a highly sensi-tive ELISA to detect urinary podocalyxin. Diabetologia 2012; 55 (11): 2913–9. DOI: 10.1007/s00125-012-2661-7
27. Kostovska I, Tosheska Trajkovska K, Cekovska S et al. Role of urinary podoca-lyxin in early diagnosis of diabetic nephropathy. Rom J Intern Med 2020. DOI: 10.2478/rjim-2020-0023
28. American Diabetes Association. Pharmacologic Approaches to Glycemic Treat-ment: Standards of Medical Care in Diabetes – 2020. Diabetes Care 2020; 43 (Suppl. 1): S98–S110. DOI: 10.2337/dc20-S009
29. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney International 2020; 98 (4): 839–48. DOI: 10.1016/j.kint.2020.06.019
30. Ninčević V, Omanović Kolarić T, Roguljić H et al. Renal Benefits of SGLT 2 In-hibitors and GLP-1 Receptor Agonists: Evidence Supporting a Paradigm Shift in the Medical Management of Type 2 Diabetes. Int J Mol Sci 2019; 20 (23): 5831. DOI: 10.3390/ijms20235831
31. Diego Ennes G, Foresto RD, Ribeiro AB. SGLT-2 inhibitors in diabetes: a focus on renoprotection. Revista da Associação Médica Brasileira 2020; 66 (Suppl. 1): s17–s24. DOI: 10.1590/1806-9282.66.s1.17
32. De Vos LC, Hettige TS, Cooper ME. New Glucose-Lowering Agents for Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25: 149–57. DOI: 10.1053/j.ackd.2018.01.002
33. Wiviott S, Raz I, Bonaca M et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 380: 347–57. DOI: 10.1056/NEJMoa 1812389
34. Mahaffey KW, Neal B et al. Canagliflozin for Primary and Secondary Preven-tion of Cardiovascular Events. Circulation 2018; 137 (4): 323–34. DOI: 10.1161/CIRCULATIONAHA.117.032038./
35. Perkovic V, Jardine MJ et al. Canagliflozin and Renal Outcomes in Type 2 Dia-betes and Nephropathy. N Engl J Med 2019; 380: 2295–306. DOI: 10.1056/NE-JMoa1811744
36. Heerspink H, Stefánsson B, Correa-Rotter R et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2020; 383: 1436–46. DOI: 10.1056/NEJ-Moa2024816
37. Fioretto P, Frascati A. Роль препаратов инкретинового ряда в лечении диабетической болезни почек. Сахарный диабет. 2018; 21 (5): 395–8. DOI: 10.14341/DM9845
[Fioretto P, Frascati A. Role of incretin based therapies in the treatment of dia-betic kidney disease. Sakharnyi diabet. 2018; 21 (5): 395–8. DOI: 10.14341/DM9845 (in Russian).]
38. Yin W, Xu S, Wang Z et al. Recombinant human GLP-1(rhGLP-1) alleviating re-nal tubulointestitial injury in diabetic STZ-induced rats. Biochem Biophys Res Commun 2018; 495: 793–800. DOI: 10.1016/j.bbrc.2017.11.076
39. Muskiet MHA, Tonneijck L, Smits MM et al. GLP-1 and the kidney: From physi-ology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 2017; 13: 605–28. DOI: 10.1038/nrneph.2017.123
40. Marso SP, Daniels GH et al. LEADER Steering Committee; LEADER Trial Inves-tigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375 (4): 311–22. DOI: 10.1056/NEJMoa1603827
41. Marso S, Bain S, Consoli A et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2016; 375: 1834–44. DOI: 10.1056/NEJMoa1607141
42. Husain M, Birkenfeld A, Donsmark M et al. Oral Semaglutide and Cardiovascu-lar Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2019; 381: 841–
51. DOI: 10.1056/NEJMoa1901118
43. Tuttle KR, Lakshmanan MC, Rayner B et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): A multicentre, open-label, randomised trial. Lancet Diabetes En-docrinol 2018; 6: 605–17. DOI: 10.1016/S2213-8587(18)30104-9
44. Muskiet MHA, Tonneijck L, Huang Y et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: An exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2018; 6: 859–69. DOI: 10.1016/S2213-В587(18)30268-7.
45. Лобанова К.Г., Северина А.С., Мартынов С.А. и др. Контроль гликемии у па-циентов с сахарным диабетом на программном гемодиализе. Терапевти-ческий архив. 2019; 91 (10): 124–34. DOI: 10.26442/00403660. 2019.10.000352 [Lobanova K.G., Severina A.S., Martinov S.A. et al. Glycemic control in patients with diabetes mellitus on hemodialysis. Therapeutic Archive. 2019; 91 (10): 124–134. DOI: 10.26442/00403660.2019.10.000352 (in Russian).]
46. Patel V, Panja S, Venkataraman A et al. The HOPE Study and MICRO-HOPE Sub-study effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus. British J Diabet Vasc Dis 2001; 1: 44–51.
47. Brenner BM, Cooper ME, Zeeuw de D et al. The RENAAL Study Investigators. Ef-fects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. New Eng J Med 2001; 345: 861–9.
48. Zhang Y, He D, Zhang W et al. ACE Inhibitor Benefit to Kidney and Cardiovas-cular Outcomes for Patients with Non-Dialysis Chronic Kidney Disease Stages 3–5: A Network Meta-Analysis of Randomised Clinical Trials. Drugs 2020; 80 (8): 797–811. DOI: 10.1007/s40265-020-01290-3
49. Xie X, Liu Y, Perkovic V et al. Renin-Angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a Bayesian network meta-analysis of randomised clinical trials. Am J Kidney Dis 2016; 67 (5): 728–41.
50. Wu HY, Huang JW, Lin HJ et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and bayesian network meta-analysis. BMJ 2013; 347: f6008.
51. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 2020; 98 (4S): S1–S115. DOI: 10.1016/j.kint.2020. 06.019
52. Кобалава Ж.Д., Конради А.О., Недогода С.В и др. Артериальная гипертен-зия у взрослых. Клинические рекомендации 2020. Российский кардиоло-гический журнал. 2020; 25 (3): 3786. DOI: 10.15829/1560-4071-2020-3-3786
[Kobalava Z.D., Konradi A.O., Nedogoda S.V. et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020; 25 (3): 3786 (in Russian).]
53. Pontremoli R, Bellizzi V, Bianchi S. Management of dyslipidaemia in patients with chronic kidney disease: a position paper endorsed by the Italian Society of Nephrology. J Nephrol 2020; 33 (3): 417–30. DOI: 10.1007/s40620-020-00707-2
54. Hwang SD, Kim K, Kim YJ et al. Effect of statins on cardiovascular complica-tions in chronic kidney disease patients: A network meta-analysis. Medicine (Baltimore) 2020; 99 (22): e20061. DOI: 10.1097/MD.0000000000020061
55. Baigent C, Landray MJ, Reith C et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 2011; 377: 2181–92. DOI: 10.1016/S0140-6736(11),60739-3
56. Ko G-J, Rhee CM, Kalantar-Zadeh K et al. The Effects of High-Protein Diets on Kidney Health and Longevity. JASN 2020, 31 (8): 1667–79. DOI: 10.1681/ASN.2020010028
57. Jhee JH, Kee YK, Park S et al. High-protein diet with renal hyperfiltration is as-sociated with rapid decline rate of renal function: a community-based prospec-tive cohort study. Nephrol Dial Transplant 2020; 35 (1): 98–106. DOI: 10.1093/ndt/gfz115
58. Rhee CM, Ahmadi SF, Kovesdy CP, Kalantar-Zadeh K. Low-protein diet for con-servative management of chronic kidney disease: A systematic review and meta-analysis of controlled trials. J Cachexia Sarcopenia Muscle 2018; 9: 235–
45. DOI: 10.1002/jcsm.12264
59. Metzger M, Yuan WL, Haymann JP et al. Association of a Low-Protein Diet With Slower Progression of CKD. Kidney Int Rep 2018; 3: 105–14. DOI: 10.1016/j.ekir.2017.08.010
60. Shah BV, Patel ZM. Role of low protein diet in management of different stages of chronic kidney disease – practical aspects. BMC Nephrol 2016; 17: 156. DOI: 10.1186/s12882-016-0360-1
61. Hanna RM, Ghobry L, Wassef O et al. A Practical Approach to Nutrition, Pro-tein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kid-ney Disease. Blood Purif 2020; 49: 202–11. DOI: 10.1159/000504240
62. Миловалов Л.Ю., Шилов Е.М., Лысенко Л.В. и др. Клинические рекоменда-ции. «Питание больных на додиализных стадиях хронической болезни почек». Научное общество нефрологов России. Ассоциация нефрологов России. М., 2014.
[Milovalov L.Iu., Shilov E.M., Lysenko L.V. et al. Klinicheskie rekomendatsii. Pi-tanie bol'nykh na dodializnykh stadiiakh khronicheskoi bolezni pochek. Nauchnoe obshchestvo nefrologov Rossii. Assotsiatsiia nefrologov Rossii. Moscow, 2014 (in Russian).]