Метформин и COVID-19. Дюжина причин для назначения

Овсянников К.В. Метформин и COVID-19. Дюжина причин для назначения. FOCUS Эндокринология. 2022; 1: 53–62. DOI: 10.47407/ef2022.3.1.0058

Ovsyannikov K.V. Metformin and COVID-19. A dozen reasons to prescribe. FOCUS Endocrinology. 2022; 1: 53–62. DOI: 10.47407/ef2022.3.1.0058

Метформин является препаратом 1-й линии для лечения диабета 2 типа, при этом он имеет долгую историю применения в лечении инфекционных заболеваний, таких как грипп, гепатит С и вирус Зика. В условиях нынешней пандемии COVID-19, которая быстро распространилась по всему миру, были опубликованы 4 обсервационных исследования, показавших снижение смертности среди лиц, применяющих метформин в амбулаторных условиях. Существует несколько потенциальных механизмов, с помощью которых метформин может снизить смертность от COVID-19. Возможные такого рода эффекты метформина были связаны как непосредственно с инфекционным агентом (вирусом), так и с улучшением метаболического статуса пациента. Неизвестно, обусловлена ли более низкая смертность, предполагаемая обсервационными исследованиями, у пациентов, инфицированных COVID-19, которые принимают метформин, прямой активностью против самого вируса, улучшением состояния пациента или и тем и другим.

Ключевые слова: сахарный диабет, метформин, COVID-19

Овсянников Константин Валерьевич - Медико-биологический университет инноваций и непрерывного образования ФМБА России, Москва, Россия

1. Bailey CJ. Metformin: Historical Overview. Diabetologia 2017; 60 (9): 1566–76. DOI: 10.1007/s00125-017-4318-z

2. Ungar G, Freedman L, Shapiro SL. Pharmacological Studies of a New Oral Hypoglycemic Drug. Exp Biol Med 1957; 95 (1): 190–2. DOI: 10.3181/00379727-95-23163

3. Igel LI, Sinha A, Saunders KH et al. Metformin: An Old Therapy That Deserves a New Indication for the Treatment of Obesity. Curr Atheroscler Rep 2016; 18 (4): 16. DOI: 10.1007/s11883-016-0568-3

4. Desilets AR, Dhakal-Karki S, Dunican KC. Role of Metformin for Weight Management in Patients Without Type 2 Diabetes. Ann Pharmacother 2008; 42 (6): 817–26. DOI: 10.1345/aph.1K656

5. Valencia WM, Palacio A, Tamariz L, Florez H. Metformin and Ageing: Improving Ageing Outcomes Beyond Glycaemic Control. Diabetologia 2017; 60 (9): 1630–8. DOI: 10.1007/s00125-017-4349-5

6. Kuo C-L, Pilling LC, Atkins JL et al. Biological Aging Predicts Vulnerability to COVID-19 Severity in UK Biobank Participants. Journals Gerontol Ser A 2021; 76 (8): e133–41. DOI: 10.1093/gerona/glab060

7. Richardson S, Hirsch JS, Narasimhan M et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With Covid-19 in the New York City Area. JAMA 2020; 323 (20): 2052–9. DOI: 10.1001/jama.2020.6775

8. Luo P, Qiu L, Liu Y et al. Metformin Treatment was Associated With Decreased Mortality in COVID-19 Patients With Diabetes in a Retrospective Analysis. Am J Trop Med Hyg 2020; 103 (1): 69–72. DOI: 10.4269/ajtmh.20-0375

9. Cariou B, Hadjadj S, Wargny M, et al. Phenotypic Characteristics and Prognosis of Inpatients With COVID-19 and Diabetes: The CORONADO Study. Diabetologia 2020; 63 (8): 1500–15. DOI: 10.1007/s00125-020-05180-x

10. Bramante CT, Ingraham NE, Murray TA et al. Metformin and Risk of Mortality in Patients Hospitalised With COVID-19: A Retrospective Cohort Analysis. Lancet Healthy Long 2021; 2 (1): e34–41. DOI: 10.1016/S2666-7568(20)30033-7

11. Lalau J-D, Al-Salameh A, Hadjadj S et al. Metformin Use is Associated With a Reduced Risk of Mortality in Patients With Diabetes Hospitalised for COVID-19. Diabetes Metab 2020; 2020: 101216. DOI: 10.1016/j.diabet.2020.101216

12. Lukito AA, Pranata R, Henrina J et al. The Effect of Metformin Consumption on Mortality in Hospitalized Covid-19 Patients: A Systematic Review and Meta-Analysis. Diabetes Metab Syndrome 2020; 14 (6): 2177–83. DOI: 10.1016/j.dsx.2020.11.006

13. Simonnet A, Chetboun M, Poissy J et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-Cov-2) Requiring Invasive Mechanical Ventilation. Obes (Silver Spring Md) 2020; 28 (7): 1195–9. DOI: 10.1002/oby.22831

14. Ingraham NE, Barakat AG, Reilkoff R et al. Understanding the renin-angiotensin-aldosterone-SARS-CoV Axis: A Comprehensive Review. Eur Respir J 2020; 56 (1): 2000912. DOI: 10.1183/13993003.00912-2020

15. Gong L, Goswami S, Giacomini KM, et al. Metformin Pathways: Pharmacokinetics and Pharmacodynamics. Pharmacogenet Genomics 2012; 22 (11): 820–7. DOI: 10.1097/FPC.0b013e3283559b22

16. Graham GG, Punt J, Arora M et al. Clinical Pharmacokinetics of Metformin. Clin Pharmacokinet 2011; 50 (2): 81–98. DOI: 10.2165/11534750-000000000-00000

17. Zhou G, Myers R, Li Y et al. Role of AMP-activated Protein Kinase in Mechanism of Metformin Action. J Clin Invest 2001; 108 (8): 1167–74. DOI: 10.1172/JCI13505

18. Rena G, Hardie DG, Pearson ER. The Mechanisms of Action of Metformin. Diabetologia 2017; 60 (9): 1577–85. DOI: 10.1007/s00125-017-4342-z

19. Cameron AR, Morrison VL, Levin D et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ Res 2016; 119 (5): 652–65. DOI: 10.1161/CIRCRESAHA.116.308445

20. Saisho Y. Metformin and Inflammation: Its Potential Beyond Glucose-lowering Effect. Endocr Metab Immune Disord Drug Targets 2015; 15 (3): 196–205. DOI: 10.2174/1871530315666150316124019

21. Mancini SJ, White AD, Bijland S et al. Activation of AMP-Activated Protein Kinase Rapidly Suppresses Multiple Pro-Inflammatory Pathways in Adipocytes Including IL-1 Receptor-Associated Kinase-4 Phosphorylation. Mol Cell Endocrinol 2017; 440: 44–56. DOI: 10.1016/j.mce.2016.11.010

22. Ingraham NE, Lotfi-Emran S, Thielen BK et al. Immunomodulation in COVID-19. Lancet Respir Med 2020; 8 (6): 544–6. DOI: 10.1016/S2213-2600(20)30226-5

23. Gordon DE, Jang GM, Bouhaddou M et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. bioRxiv 2020; 583: 459–68. DOI: 10.1038/s41586-020-2286-9

24. Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: A Possible Role Beyond Diabetes. Diabetes Res Clin Pract 2020; 164: 108183. DOI: 10.1016/j.diabres.2020.108183

25. Singh AK, Singh R. Is Metformin Ahead in the Race as a Repurposed Host-Directed Therapy for Patients With Diabetes and COVID-19? Diabetes Res Clin Pract 2020; 165:108268. DOI: 10.1016/j.diabres.2020.108268

26. Esam Z. A Proposed Mechanism for the Possible Therapeutic Potential of Metformin in COVID-19. Diabetes Res Clin Pract 2020; 167: 108282. DOI: 10.1016/j.diabres.2020.108282

27. Ilias I, Zabuliene L. Hyperglycemia and the Novel Covid-19 Infection: Possible Pathophysiologic Mechanisms. Med Hypotheses 2020; 139: 109699. DOI: 10.1016/j.mehy.2020.109699

28. Bode B, Garrett V, Messler J et al. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. J Diabetes Sci Technol 2020; 14 (4): 813–21. DOI: 10.1177/1932296820924469

29. Zhu L, She ZG, Cheng X et al. Association of Blood Glucose Control and Outcomes in Patients With COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab 2020; 31 (6): 1068–77. DOI: 10.1016/j.cmet.2020.04.021

30. Crouse AB, Grimes T, Li P et al. Metformin Use is Associated With Reduced Mortality in a Diverse Population With Covid-19 and Diabetes. Front Endocrinol. 2021; 1081: 11. DOI: 10.3389/fendo.2020.600439

31. Jadhav S, Ferrell W, Greer IA et al. Effects of Metformin on Microvascular Function and Exercise Tolerance in Women With Angina and Normal Coronary Arteries: A Randomized, Double-Blind, Placebo-Controlled Study. J Am Coll Cardiol 2006; 48 (5): 956–63. DOI: 10.1016/j.jacc.2006.04.088

32. Xin G, Wei Z, Ji C et al. Metformin Uniquely Prevents Thrombosis by Inhibiting Platelet Activation and mtDNA Release. Sci Rep 2016; 6: 36222. DOI: 10.1038/srep36222

33. Lu D-Y, Leu H-B. Metformin and Risk of Deep Vein Thrombosis: A Nonrandomized, Pair-Matched Cohort Study. J Am Coll Cardiol 2014; 63 (12): A2099. DOI: 10.1016/S0735-1097(14)62102-1

34. Levi M, Thachil J, Iba T, Levy JH. Coagulation Abnormalities and Thrombosis in Patients With COVID-19. Lancet Haematol 2020; 7 (6): e438–40. DOI: 10.1016/S2352-3026(20)30145-9

35. Bikdeli B, Madhavan MV, Jimenez D et al. Covid-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: Jacc State-of-the-Art Review. J Am Coll Cardiol 2020; 75 (23): 2950–73. DOI: 10.1016/j.jacc.2020.04.031

36. Apostolova N, Iannantuoni F, Gruevska A et al. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 2020; 34. DOI: 10.1016/j.redox.2020.101517

37. Rangarajan S, Becker EJ, Husain M et al. Metabolismof Activated Myofibroblasts Is Linked to AMPK Inactivation and Impaired Resolution of Lung Fibrosis. D109. MODULATING the FIBROTIC Response. P. A7876–6.

38.       Ackermann M, Verleden SE, Kuehnel M et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New Engl J Med 2020; 383 (2): 120–8. DOI: 10.1056/NEJMoa2015432

39. Zhou Z, Tang Y, Jin X et al. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly Through AMPK Activation and RAGE/Nfκb Pathway Suppression. J Diabetes Res 2016; 2016: 4847812. DOI: 10.1155/2016/4847812

40. Rangarajan S, Bone NB, Zmijewska AA et al. Metformin Reverses Established Lung Fibrosis in a Bleomycin Model. Nat Med 2018; 24 (8): 1121–7. DOI: 10.1038/s41591-018-0087-6

41. Yu M, Liu Y, Xu D, et al. Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged After Treatment for COVID-19 Pneumonia. Korean J Radiol 2020; 21 (6): 746–55. DOI: 10.3348/kjr.2020.0215

42. Ursini F, Russo E, Pellino G et al. Metformin and Autoimmunity: A “New Deal” of an Old Drug. Front Immunol 2018; 9 (1236): 1236. DOI: 10.3389/fimmu.2018.01236

43. Dehkordi AH, Abbaszadeh A, Mir S, Hasanvand A. Metformin and its Anti-Inflammatory and Anti-Oxidative Effects; New Concepts. J Renal Injury Prev 2018; 8 (1): 54–61. DOI: 10.15171/jrip.2019.11

44. Afshari K, Dehdashtian A, Haddadi NS et al. Anti-Inflammatory Effects of Metformin Improve the Neuropathic Pain and Locomotor Activity in Spinal Cord Injured Rats: Introduction of an Alternative Therapy. Spinal Cord 2018; 56 (11): 1032–41. DOI: 10.1038/s41393-018-0168-x

45.       Mehta P, McAuley DF, Brown M et al. Covid-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet 2020; 395 (10229): 1033–4. DOI: 10.1016/S0140-6736(20)30628-0

46. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med 2020; 383 (25): 2451–60. DOI: 10.1056/NEJMcp2009575

47. Chen R, Sang L, Jiang M et al. Longitudinal Hematologic and Immunologic Variations Associated With the Progression of COVID-19 Patients in China. J Allergy Clin Immunol 2020; 146 (1):89–100. DOI: 10.1016/j.jaci.2020.05.003

48. Saenwongsa W, Nithichanon A, Chittaganpitch M et al. Metformin-Induced Suppression of IFN-alpha Via mTORC1 Signalling Following Seasonal Vaccination is Associated With Impaired Antibody Responses in Type 2 Diabetes. Sci Rep 2020; 10 (1): 3229. DOI: 10.1038/s41598-020-60213-0

49. van der Made CI, Simons A, Schuurs-Hoeijmakers J et al. Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA 2020; 324 (7): 663. DOI: 10.1001/jama.2020.13719

42 49.

50. Wang HC, Huang SK. Metformin Inhibits IgE- and Aryl Hydrocarbon Receptor-Mediated Mast Cell Activation In Vitroand In Vivo. Eur J Immunol 2018; 48 (12): 1989–96. DOI: 10.1002/eji.201847706

51. Kritas SK, Ronconi G, Caraffa A et al. Mast Cells Contribute to Coronavirus-Induced Inflammation: New Anti-Inflammatory Strategy. J Biol Regul Homeost Agents 2020; 34 (1): 9–14. DOI: 10.23812/20-Editorial-Kritas

52. Theoharides TC. Covid-19, Pulmonary Mast Cells, Cytokine Storms, and Beneficial Actions of Luteolin. Biofactors 2020; 46 (3): 306–8. DOI: 10.1002/biof.1633

53. Mackey E, Ayyadurai S, Pohl CS et al. Sexual Dimorphism in the Mast Cell Transcriptome and the Pathophysiological Responses to Immunological and Psychological Stress. Biol Sex Differ 2016; 7: 60. DOI: 10.1186/s13293-016-0113-7

54. Bendib I, de Chaisemartin L, Granger V et al. Neutrophil Extracellular Traps Are Elevated in Patients With Pneumonia-related Acute Respiratory Distress Syndrome. Anesthesiology 2019; 130 (4): 581–91. DOI: 10.1097/ALN.0000000000002619

55. Zuo Y, Yalavarthi S, Shi H et al. Neutrophil Extracellular Traps in COVID-19. JCI Insight 2020; 5 (11). DOI: 10.1101/2020.04.30.20086736

56.       Almeida VH, Rondon AMR, Gomes T, Monteiro RQ. Novel Aspects of Extracellular Vesicles as Mediators of Cancer-Associated Thrombosis. Cells 2019; 8 (7). DOI: 10.3390/cells8070716

57.       Zeng F, Li L, Zeng J et al. Can We Predict the Severity of Coronavirus Disease 2019 With a Routine Blood Test? Pol Arch Intern Med 2020; 130 (5): 400–6. DOI: 10.20452/pamw.15331

58.       Kim J, You YJ. Regulation of Organelle Function by Metformin. IUBMB Life 2017; 69 (7):459–69. DOI: 10.1002/iub.1633

59.       Dominguez Andres A, Feng Y et al. SARS-Cov-2 ORF9c Is a Membrane-Associated Protein That Suppresses Antiviral Responses in Cells. bioRxiv 2020. DOI: 10.1101/2020.08.18.256776

60. Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J 2020; 39 (3): 198–216. DOI: 10.1007/s10930-020-09901-4

61.       Azar WS, Njeim R, Fares AH et al. Covid-19 and Diabetes Mellitus: How One Pandemic Worsens the Other. Rev Endocr Metab Disord 2020; 21 (4): 451–63. DOI: 10.1007/s11154-020-09573-6

62.       Karam BS, Morris RS, Bramante CT et al. mTOR inhibition in COVID‐19: A commentary and review of efficacy in RNA viruses. J Med Virol 2021; 93 (4): 1843–46. DOI: 10.1002/jmv.26728

63.       Gordon DE, Jang GM, Bouhaddou M et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020; 583 (7816): 459–68. DOI: 10.1038/s41586-020-2286-9

64.       Zhang J, Dong J, Martin M et al. AMP-Activated Protein Kinase Phosphorylation of Angiotensin-Converting Enzyme 2 in Endothelium Mitigates Pulmonary Hypertension. Am J Respir Crit Care Med 2018; 198 (4): 509–20. DOI: 10.1164/rccm.201712-2570OC

65.       Liu J, Li X, Lu Q et al. AMPK: A Balancer of the Renin-Angiotensin System. Biosci Rep 2019; 39 (9). DOI: 10.1042/BSR20181994

66.       Plattner F, Bibb JA. Serine and Threonine Phosphorylation. In: Brady ST, Siegel GJ, Albers RW, Price DL, editors. Basic Neurochemistry. New York: Academic Press; 201). P. 467–92.

67.       Malhotra A, Hepokoski M, McCowen KC. ACE2 JYJS. Metformin, and COVID-19. iScience 2020; 23 (9): 101425. DOI: 10.1016/j.isci.2020.101425

68.       Varghese E, Samuel SM, Liskova A et al. Diabetes and coronavirus (SARS-CoV-2): Molecular mechanism of Metformin intervention and the scientific basis of drug repurposing. PLOS Pathog 2021; 17 (6): e1009634. DOI: 10.1371/journal.ppat.1009634

69.       Samuel SM, Varghese E, Büsselberg D. Therapeutic Potential of Metformin in COVID-19: Reasoning for Its Protective Role. Trends Microbiol 2021; 29 (10): 894–907. DOI: 10.1016/j.tim.2021.03.004

70.       Gordon DE, Jang GM, Bouhaddou M et al. Long-Term Safety, Tolerability, and Weight Loss Associated With Metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care 2012; 35 (4): 731–7. DOI: 10.2337/dc11-1299

71.       Coll AP, Chen M, Taskar P et al. GDF15 Mediates the Effects of Metformin on Body Weight and Energy Balance. Nature 2020; 578 (7795): 444–8. DOI: 10.1038/s41586-019-1911-y

72. Singer-Englar T, Barlow G, Mathur R. Obesity, Diabetes, and the Gut Microbiome: An Updated Review. Expert Rev Gastroenterol Hepatol 2019; 13 (1): 3–15. DOI: 10.1080/17474124.2019.1543023

73. Dhar D, Mohanty A. Gut Microbiota and Covid-19- Possible Link and Implications. Virus Res 2020; 285: 198018. DOI: 10.1016/j.virusres.2020.198018

74. Zuo T, Liu Q, Zhang F et al. Depicting SARS-CoV-2 Faecal Viral Activity in Association With Gut Microbiota Composition in Patients With COVID-19. Gut 2021; 70 (2): 276–84. DOI: 10.1136/gutjnl-2020-322294

75. Zhang W, Xu JH, Yu T, Chen QK. Effects of Berberine and Metformin on Intestinal Inflammation and Gut Microbiome Composition in Db/Db Mice. BioMed Pharmacother 2019; 118: 109131. DOI: 10.1016/j.biopha.2019.109131

76. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V et al. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia Muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care 2017; 40 (1): 54–62. DOI: 10.2337/dc16-1324

77.       Sun L, Xie C, Wang G et al. Gut Microbiota and Intestinal FXR Mediate the Clinical Benefits of Metformin. Nat Med 2018; 24 (12): 1919–29. DOI: 10.1038/s41591-018-0222-4

78.       Garcia EY. Flumamine, A New Synthetic Analgesic and Antiflu Drug. Ph Med Assoc 1950; 26: 287–93.

79.       Schor S, Einav S. Combating Intracellular Pathogens With Repurposed Host-Targeted Drugs. ACS Infect Dis 2018; 4 (2): 88–92. DOI: 10.1021/acsinfecdis.7b00268

80. Singh S, Singh PK, Suhail H et al. Amp-Activated Protein Kinase Restricts Zika Virus Replication in Endothelial Cells by Potentiating Innate Antiviral Responses and Inhibiting Glycolysis. J Immunol 2020; 204 (7): 1810–24. DOI: 10.4049/jimmunol.1901310

81. Cheng F, Ramos da Silva S, et al. Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22. J Virol 2018; 92 (4): e02019–02017. DOI: 10.1128/JVI.02019-17

82. Yu JW, Sun LJ, Zhao YH, et al. The Effect of Metformin on the Efficacy of Antiviral Therapy in Patients With Genotype 1 Chronic Hepatitis C and Insulin Resistance. Int J Infect Dis 2012; 16 (6): e436–41. DOI: 10.1016/j.ijid.2012.02.004

83. Flory J, Lipska K. Metformin in 2019. JAMA 2019; 321 (19): 1926–7. DOI: 10.1001/jama.2019.3805

84. Henry RR, Frias JP, Walsh B et al. Improved Glycemic Control With Minimal Systemic Metformin Exposure: Effects of Metformin Delayed-Release (Metformin DR) Targeting the Lower Bowel Over 16 Weeks in a Randomized Trial in Subjects With Type 2 Diabetes. PloS One 2018; 13 (9): e0203946. DOI: 10.1371/journal.pone.0203946

85. Kirkman MS, Briscoe VJ, Clark N et al. Diabetes in Older Adults. Diabetes Care 2012; 35 (12): 2650–64. DOI: 10.2337/dc12-1801

86. Smith FC, Stocker SL, Danta M et al. The Safety and Pharmacokinetics of Metformin in Patients With Chronic Liver Disease. Aliment Pharmacol Ther 2020; 51 (5): 565–75. DOI: 10.1111/apt.15635

87.       Cheng X, Liu Y-M, Li H et al. Metformin Is Associated with Higher Incidence of Acidosis, but Not Mortality, in Individuals with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab 2020; 32 (4): 537–47. DOI: 10.1016/j.cmet.2020.08.013

88. Alqudah A, McKinley MC, McNally R et al. Risk of Pre-Eclampsia in Women Taking Metformin: A Systematic Review and Meta-Analysis. Diabetes Med 2018; 35 (2): 160–72. DOI: 10.1111/dme.13523

89. Kalafat E, Sukur YE, Abdi A et al. Metformin for Prevention of Hypertensive Disorders of Pregnancy in Women With Gestational Diabetes or Obesity: Systematic Review and Meta-Analysis of Randomized Trials. Ultrasound Obstet Gynecol 2018; 52 (6): 706–14. DOI: 10.1002/uog.19084

90. Blonde L, Dailey GE, Jabbour SA et al. Gastrointestinal tolerability of extended-release metformin tablets compared to immediate-release metformin tablets: results of a retrospective cohort study. Curr Med Res Opin 2004; 20 (4): 565–72. DOI: 10.1185/030079904125003278

91. Аметов А.С. Приверженность пациентов терапии метформином пролонгированного действия (Глюкофаж® Лонг) в условиях реальной клинической практики в Российской Федерации. Эндокринология: новости, мнения, обучение 2017; 4: 52–6. DOI: 10.24411/2304-9529-2017-00002. [Ametov AS. Priverzhennost' patsientov terapii metforminom prolongirovannogo deistviya (Glyukofazh® Long) v usloviyakh real'noi klinicheskoi praktiki v Rossiiskoi Federatsii. Endokrinologiya: novosti, mneniya, obuchenie 2017; 4: 52–6. DOI: 10.24411/2304-9529-2017-00002 (in Russian)].

92. Chen Y, Yang D, Cheng B et al. Clinical Characteristics and Outcomes of Patients With Diabetes and COVID-19 in Association With Glucose-Lowering Medication. Diabetes Care 2020; 43 (7): 1399–407. DOI: 10.2337/dc20-0660

Прямой эфир