Патогенетические механизмы нарушения функции щитовидной железы при COVID-19

Михайлова А.А., Лагутина Д.И., Черникова А.Т., Радугин Ф.М., Быстрова А.А., Каронова Т.Л. Патогенетические механизмы нарушения функции щитовидной железы при COVID-19. FOCUS Эндокринология. 2022; 1: 30–35. DOI: 10.47407/ef2022.3.1.0062

Mikhailova A.A., Lagutina D.I., Chernikova A.T., Radugin F.M., Bystrova A.A., Karonova T.L. Pathogenetic mechanisms of thyroid dysfunction in COVID-19. FOCUS Endocrinology. 2022; 1: 30–35. DOI: 10.47407/ef2022.3.1.0062

Настоящий обзор суммирует сведения об основных патогенетических механизмах нарушения функции щитовидной железы (ЩЖ), ассоциированных с COVID-19. На сегодняшний день в литературе имеются указания на прямой механизм повреждения тиреоцитов и тиреотрофов посредством связывания SARS-CoV-2 с мембранными белками (ангиотензинпревращающий фермент-2, трансмембранная протеаза серина-2, нейропилин-1, интегриновые и обонятельные рецепторы) на поверхности клеток. К настоящему моменту опубликованы данные, подтверждающие наличие SARS-CoV-2 в образце ткани ЩЖ. Вместе с тем рассматривается возможность непрямого (иммуноопосредованного) поражения ЩЖ, связанного с развитием гипервоспалительного синдрома, гиперцитокинемией и цитотоксическими эффектами Т-клеток. Накапливается все больше данных о случаях деструктивных тиреоидитов и манифестации аутоиммунных заболеваний ЩЖ у пациентов с COVID-19. Дополнительно известно, что на показатели тиреоидного статуса могут влиять препараты, применяемые для лечения новой коронавирусной инфекции, в частности глюкокортикостероиды и гепарины. Уточнение патогенетических аспектов дисфункции ЩЖ, вызванной SARS-CoV-2, может иметь клиническое значение для выбора тактики ведения пациентов как в острый, так и постковидный периоды инфекции.

Ключевые слова: COVID‑19, SARS-CoV-2, щитовидная железа, ТТГ, ангиотензинпревращающий фермент 2, цитокиновый шторм, глюкокортикостероиды, Т-клетки

Михайлова Арина Алексеевна - ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, Санкт-Петербург
Лагутина Дарья Ивановна - ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, Санкт-Петербург
Черникова Алёна Тимуровна - ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, Санкт-Петербург
Радугин Федор Михайлович - ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, Санкт-Петербург
Быстрова Анна Андреевна - ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, Санкт-Петербург
Каронова Татьяна Леонидовна - ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, Санкт-Петербург, Россия

1.     Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5 (4): 536–44.

2.     Chen T, Wu D, Chen H et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020; 368.

3.     Coperchini F, Chiovato L, Croce L et al. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25–32.

4.     Giovanella L, Ruggeri RM, Ovčariček PP et al. Prevalence of thyroid dysfunction in patients with COVID-19: a systematic review. Clin Transl Imaging 2021; 11: 1–8.

5.     Walls AC, Park YJ, Tortorici MA et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020; 181 (2): 281–92.

6.     Wrapp D, Wang N, Corbett KS et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367 (6483): 1260–3.

7.     Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 2020; 9 (1): 45.

8.     Rotondi M, Coperchini F, Ricci G, Denegri M et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. J Endocrinol Invest 2021; 44 (5): 1085–90.

9.     Facchiano A, Facchiano F, Facchiano A. An investigation into the molecular basis of cancer comorbidities in coronavirus infection. FEBS Open Bio 2020; 10 (11): 2363–74.

10. Wong DWL, Klinkhammer BM, Djudjaj S et al. Multisystemic Cellular Tropism of SARS-CoV-2 in Autopsies of COVID-19 Patients. Cells 2021; 10 (8): 1900. DOI: 10.3390/cells10081900.

11. Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res 2020; 177.

12. Davis PJ, Lin HY, Hercbergs A et al. Coronaviruses and integrin αvβ3: does thyroid hormone modify the relationship? Endocr Res 2020; 45 (3): 210–5.

13. Daly JL, Simonetti B, Klein K et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 2020; 370 (6518): 861–5.

14. Kothandaraman N, Anantharaj R, Xue B et al. COVID-19 Endocrinopathy with Hindsight from SARS. American Journal of Physiology-Endocrinology and Metabolism 2021; 320 (1): E139–50.

15. Kerslake R, Hall M, Randeva HS et al. Coexpression of peripheral olfactory receptors with SARSCoV2 infection mediators: Potential implications beyond loss of smell as a COVID19 symptom. Int J Mol Med 2020; 46 (3): 949–56.

16. Pellegrino R, Cooper KW, Di Pizio A et al. Corona viruses and the chemical senses: Past, present, and future. Chem Senses 2020; 45 (6): 415–22.

17. Bradley BT, Maioli H, Johnston R et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series [published correction appears in Lancet 2020; 396 (10247): 312]. Lancet 2020; 396 (10247): 320–32. DOI: 10.1016/S0140-6736(20)31305-2

18. Ding Y, He L, Zhang Q et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004; 203 (2): 622–30.

19. Gu J, Gong E, Zhang B et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202 (3): 415–24.

20. Wei L, Sun S, Xu CH et al. Pathology of the Thyroid in Severe Acute Respiratory Syndrome. Hum Pathol 2007; 38: 95–102.

21. Yao XH, TY L, ZC H et al. Histopathological study of new coronavirus pneumonia (COVID-19) in three patients. Chin J Pathol 2020; 49.

22. Hanley B, Naresh K, Roufosse C et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe Published 2020; 1 (6): 245–53.

23. Tanda ML, Ippolito S, Gallo D et al. SARS-CoV-2 detection in primary thyroid sarcoma: coincidence or interaction? J Endocrinol Invest 2022; 5: 1–5.

24. Wei L, Sun S, Zhang J et al. Endocrine Cells of the Adenohypophysis in Severe Acute Respiratory Syndrome (SARS). Biochem Cell Biol 2010) 88(4): 723–30.

25. Paniz-Mondolfi A, Bryce C, Grimes Z et al. Central Nervous System Involvement by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). J Med Virol 2020; 92 (7): 699–702.

26. Marshall M. Covid’s Toll on Smell and Taste: What Scientists do and Don’t Know. Nature 2021; 589 (7842): 342–3.

27. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020; 368 (6490): 473–4.

28. Lania A, Sandri MT, Cellini M et al. Thyrotoxicosis in Patients With COVID-19: The THYRCOV Study. Eur J Endocrinol 2020; 183: 381–7.

29. Mizuno S, Inaba H, Kobayashi KI et al. A Case of Postpartum Thyroiditis Following SARS-CoV-2 Infection. Endocr J 2021; 68 (3): 371–4.

30. Muller I, Cannavaro D, Dazzi D et al. Sars-CoV-2-Related Atypical Thyroiditis. Lancet Diabetes Endocrinol 2020; 8: 739–41.

31. Huang C, Wang Y, Li X, Ren L et al. Clinical Features of Patients Infected With 2019 Novel Coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497–506.

32. Ruggeri RM, Campennì A, Deandreis D et al. SARS-COV-2-related immune-inflammatory thyroid disorders: facts and perspectives. Expert Review of Clinical Immunology 2021; 17 (7): 737–59.

33. Anaya JM, Monsalve DM, Rojas M et al. Latent rheumatic, thyroid and phospholipid autoimmunity in hospitalized patients with COVID-19. J Transl Autoimmun 2021; 4: 100091.

34. Cañas CA. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals. Med Hypotheses 2020; 145: 110345.

35. Tee LY, Hajanto S, Rosario BH. Covid-19 Complicated by Hashimoto’s Thyroiditis. Singapore Med J 2021; 62 (5): 265.

36. Mateu-Salat M, Urgell E, Chico A. Sars-COV-2 as a Trigger for Autoimmune Disease: Report of Two Cases of Graves’ Disease After COVID-19. J Endocrinol Invest 2020; 43: 1527–8.

37. Harris A, Al Mushref M. Graves’ Thyrotoxicosis Following SARS-CoV-2 Infection. AACE Clin Case Rep 2021; 7 (1): 14–6.

38. Aristo V, Elroy V, Datis K. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: implications for autoimmune diseases. Front Immunol 2021; 19: 11.

39. Inaba H, Aizawa T. Coronavirus Disease 2019 and the Thyroid-Progress and Perspectives. Front. Endocrinol 2021; 12: 708333.

40. Samuels MH. Effects of variations in physiological cortisol levels on thyrotropin secretion in subjects with adrenal insufficiency: a clinical research center study. J Clin Endocrinol Metab 2000; 85 (4): 1388–93.

41. John CD, Christian HC, Morris JF et al. Kinase-dependent regulation of the secretion of thyrotrophin and luteinizing hormone by glucocorticoids and annexin 1 peptides. J Neuroendocrinol 2003; 15 (10): 946–57.

42. Alkemade A, Unmehopa UA, Wiersinga WM et al. Glucocorticoids decrease thyrotropin-releasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus. J Clin Endocrinol Metab 2005; 90 (1): 323–7.

43. Brabant A, Brabant G, Schuermeyer T et al. The role of glucocorticoids in the regulation of thyrotropin. Acta Endocrinol (Copenh) 1989; 121 (1): 95–100.

44. Elston MS et al. Duration of cortisol suppression following a single dose of dexamethasone in healthy volunteers: a randomised double-blind placebo-controlled trial. Anaesth Intens Care 2013; 41: 596–601.

45. LoPresti JS, Eigen A, Kaptein E et al. Alterations in 3,3’5’-triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man. J Clin Invest 1989; 84 (5): 1650–6. DOI: 10.1172/JCI114343

46. Bianco AC, Salvatore D, Gereben B et al. Biochemistry, Cellular and Molecular Biology, and Physiological Roles of the Iodothyronine Selenodeiodinases. Endocr Rev 2002; 23 (1): 38–89. DOI: 10.1210/edrv.23.1.0455

47. Burr WA et al. Effect of a single dose of dexamethasone on serum concentrations of thyroid hormones. Lancet 1976; 308: 58–61.

48. Koulouri O, Moran C, Halsall D. Et al. Pitfalls in the measurement and interpretation of thyroid function tests. Best Pract Res Clin Endocrinol Metab 2013; 27: 745–62.

49. Mendel CM, Frost PH, Cavalieri RR. Effect of free fatty acids on the concentration of free thyroxine in human serum: the role of albumin. J Clin Endocrinol Metab 1986; 63(6): 1394–9.

50. Mendel CM, Frost PH, Kunitake ST, Cavalieri RR. Mechanism of the heparin-induced increase in the concentration of free thyroxine in plasma. J Clin Endocrinol Metab 1987; 65(6): 1259–64.

51. Vanucchi G, Campi I, Bonomi M et al. Rituximab treatment in patients with active Graves' orbitopathy: effects on proinflammatory and humoral immune reactions. Clin Exp Immunol 2010; 161: 436–43.

52. El Fassi D, Nielsen CH, Hasselbalch HC, Hegedüs L. Treatment-resistant severe, active Graves' ophthalmopathy successfully treated with B lymphocyte depletion. Thyroid 2006; 16: 709–10.

Прямой эфир