Пандемия COVID-19 по-прежнему остается одной из наиболее актуальных проблем для мирового сообщества. Известно, что у пациентов, перенесших COVID-19, помимо поражения органов дыхательной системы, имеют место осложнения и со стороны других систем органов. За последние 2 года многие женщины отметили впервые возникшие нарушения менструального цикла, что вызывает настороженность в отношении влияния SARS-CoV-2 на женскую репродуктивную функцию, однако на сегодняшний день накоплено недостаточно клинических и статистических данных, позволяющих установить этиологию этих нарушений. Данный обзор посвящен потенциальным причинам расстройств менструального цикла у женщин репродуктивного возраста во время коронавирусной пандемии: возможному прямому влиянию SARS-CoV-2 на органы женской репродуктивной системы, роли цитокинового шторма в нарушении менструального цикла, влиянию длительной терапии глюкокортикостероидами и антикоагулянтными препаратами на расстройство менструальной функции, ассоциации повышенного уровня стресса и тревоги с нарушениями менструального цикла, а также влиянию вакцинации от COVID-19 на женскую репродуктивную функцию. Имеющиеся данные указывают на то, что нарушения менструального цикла с большой вероятностью не являются специфичным проявлением новой коронавирусной инфекции, а скорее, связаны с испытываемым женщинами стрессом, иммунной системной воспалительной реакцией или проводимой терапией.
Ключевые слова: COVID-19, SARS- CoV-2, нарушения менструального цикла.
1. Li K, Chen G, Hou H et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod Biomed Online 2021; 42 (1): 260–7. DOI: 10.1016/j.rbmo.2020.09.020
2. Chen N, Zhou M, Dong X et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395 (10223): 507–13. DOI: 10.1016/S0140-6736(20)30211-7
3. Guan W, Ni Z, Hu Y et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382 (18): 1708–20. DOI: 10.1056/NEJMoa2002032
4. Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens 2020; 9 (3): 186. DOI: 10.3390/pathogens9030186
5. Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181 (2): 271–80.e8. DOI: 10.1016/j.cell.2020.02.052
6. Zhang H, Li H-B, Lyu J-R et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int J Infect Dis 2020; 96 (2): 19–24. DOI: 10.1016/j.ijid.2020.04.027
7. Zhu H, Rhee J-W, Cheng P et al. Cardiovascular Complications in Patients with COVID-19: Consequences of Viral Toxicities and Host Immune Response. Curr Cardiol Rep 2020; 22 (5): 32. DOI: 10.1007/s11886-020-01292-3
8. Douglas GC, O’Bryan MK, Hedger MP et al. The Novel Angiotensin-Converting Enzyme (ACE) Homolog, ACE2, Is Selectively Expressed by Adult Leydig Cells of the Testis. Endocrinology 2004; 145 (10): 4703–11. DOI: 10.1210/en.2004-0443
9. Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 2020; 9 (4): 920. DOI: 10.3390/cells9040920
10. Illiano E, Trama F, Costantini E. Could COVID‐19 have an impact on male fertility? Andrologia 2020; 52 (6): 920. DOI: 10.1111/and.13654
11. Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 1998; 9 (4): 411–6. DOI: 10.1006/scdb.1998.0203
12. Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation. Biol Reprod 2018; 99 (1): 101–11. DOI: 10.1093/biolre/ioy059
13. Ma L, Xie W, Li D et al. M Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. MedRxiv 2020. DOI: 10.1101/2020.03.21.20037267
14. Kadihasanoglu M, Aktas S, Yardimci E et al. SARS-CoV-2 Pneumonia Affects Male Reproductive Hormone Levels: A Prospective, Cohort Study. J Sex Med 2021; 18 (2): 256–64. DOI: 10.1016/j.jsxm.2020.11.007
15. Salonia A, Pontillo M, Capogrosso P et al. Severely low testosterone in males with COVID-19: A case-control study. Andrology 2021; 00: 1–10. DOI: 10.1111/andr.12993
16. Kao KT, Denker M, Zacharin M, Wong SC. Pubertal abnormalities in adolescents with chronic disease. Best Pract Res Clin Endocrinol Metab 2019; 33 (3): 101275. DOI: 10.1016/j.beem.2019.04.009
17. Takmaz T, Gundogmus I, Okten SB, Gunduz A. The impact of COVID-19-related mental health issues on menstrual cycle characteristics of female healthcare providers. J Obstet Gynaecol Res 2021; 47 (9): 3241–9. DOI: 10.1111/jog.14900
18. Phelan N, Behan LA, Owens L. The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Front Endocrinol (Lausanne) 2021; 12 (2): 256–64. DOI: 10.3389/fendo.2021.642755
19. Toufexis D, Rivarola MA, Lara H, Viau V. Stress and the reproductive axis. J Neuroendocrinol 2014; 26 (9): 573–86. DOI: 10.1111/jne.12179
20. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 1998; 129 (3): 229–40. DOI: 10.7326/0003-4819-129-3-199808010-00012
21. Honorato-Sampaio K, Pereira VM, Santos RA, Reis AM. Evidence that angiotensin-(1-7) is an intermediate of gonadotrophin-induced oocyte maturation in the rat preovulatory follicle. Exp Physiol 2012; 97 (5): 642–50. DOI: 10.1113/expphysiol.2011.061960
22. Barreta MH, Gasperin BG, Ferreira R et al. The components of the angiotensin-(1-7) system are differentially expressed during follicular wave in cattle. J Renin Angiotensin Aldosterone Syst 2015; 16 (2): 275–83. DOI: 10.1177/1470320313491996.
23. Vaz-Silva J, Carneiro MM, Ferreira MC et al. The vasoactive peptide angiotensin-(1-7), its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium. Reprod Sci 2009; 16 (3): 247–56. DOI: 10.1177/1933719108327593
24. Jing Y, Run-Qian L, Hao-Ran W et al. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod 2020; 26 (6): 367–73. DOI: 10.1093/molehr/gaaa030
25. Shang J, Wan Y, Luo C et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117: 11727–34. DOI: 10.1073/pnas.2003138117
26. Yan R, Zhang Y, Li Y et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367 (6485): 1444–8. DOI: 10.1126/science.abb2762.
27. Ou X, Liu Y, Lei X et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11 (1): 1620. DOI: 10.1038/s41467-020-15562-9
28. Wang K, Chen W, Zhou Y-S et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. Published online March 14, 2020. DOI: 10.1101/2020.03.14.988345
29. Mahdian S, Shahhoseini M, Moini A. COVID-19 Mediated by Basigin Can Affect Male and Female Fertility. Int J Fertil Steril 2020; 14 (3): 262–3. DOI: 10.22074/ijfs.2020.134702
30. Chen L, Bi J, Nakai M et al. Expression of basigin in reproductive tissues of estrogen receptor-α or -β null mice. Reproduction 2010; 139 (6): 1057–66. DOI: 10.1530/REP-10-0069
31. Stanley KE, Thomas E, Leaver M, Wells D. Coronavirus disease-19 and fertility: viral host entry protein expression in male and female reproductive tissues. Fertil Steril 2020; 114 (1): 33–43. DOI: 10.1016/j.fertnstert.2020.05.001
32. Tay MZ, Poh CM, Rénia L et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20: 363–74. DOI: 10.1038/s41577-020-0311-8
33. Алексеева Е.И., Тепаев Р.Ф., Шилькрот И.Ю. и др. COVID-19-ассоциированный вторичный гемофагоцитарный лимфогистиоцитоз (синдром «цитокинового шторма»). Вестник Российской академии медицинских наук 2021; 76 (1): 51–66. DOI: 10.15690/vramn1410
[Alekseeva E.I., Tepaev R.F., Shilkrot I.Y. et al. COVID-19-associated secondary hemophagocytic lymphohistiocytosis (cytokine storm syndrome). Annals of the Russian academy of medical sciences. 2021; 76 (1): 51–66 (in Russian)]. DOI: 10.15690/vramn1410
34. Netea MG, Balkwill F, Chonchol M et al. A guiding map for inflammation. Nat Immunol 2017; 18: 826–31. DOI: https://doi.org/10.1038/ni.3790
35. Mogensen TH. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin Microbiol Rev 2009; 22: 240–73. DOI: https://doi.org/10.1128/CMR.00046-08
36. Schnappauf O, Chae JJ, Kastner DL et al. The Pyrin Inflammasome in Health and Disease. Front Immunol 2019; 10: 1745. DOI: 10.3389/fimmu.2019.01745
37. Lucherini OM, Rigante D, Sota J et al. Updated overview of molecular pathways involved in the most common monogenic autoinflammatory diseases. Clin Exp Rheumatol 2018; 110 (1): 3–9. PMID: 29742053.
38. Sarzi-Puttini P, Giorgi V, Sirotti S et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol 2020; 38 (2): 337–42. PMID: 32202240.
39. Li X, Geng M, Peng Y et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020; 10: 102–8. DOI: 10.1016/j.jpha.2020.03.001
40. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl 2020; 395: 1054–62. DOI: 10.1016/S0140-6736(20)30566-3
41. McGonagle D, Sharif K, O’Regan A et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev 2020; 19: 102537. DOI: 10.1016/j.autrev.2020.102537
42. Chen G, Wu D, Guo W et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130: 2620–9. DOI: 10.1172/JCI137244
43. Kalra PS, Sahu A, Kalra SP. Interleukin-1 inhibits the ovarian steroid-induced luteinizing hormone surge and release of hypothalamic luteinizing hormone-releasing hormone in rats. Endocrinology 1990; 126 (4): 2145e52. DOI: 10.1210/endo-126-4-2145
44. Nappi RE, Rivest S. Effect of immune and metabolic challenges on the luteinizing hormone-releasing hormone neuronal system in cycling female rats: an evaluation at the transcriptional level. Endocrinology 1997; 138 (4): 1374e84. DOI: 10.1210/endo.138.4.5044
45. Rivier C, Vale W. Cytokines act within the brain to inhibit luteinizing hormone secretion and ovulation in the rat. Endocrinology 1990; 127 (2): 849e56. DOI: 10.1210/endo-127-2-849
46. Зайцева Л.Г., Сергеева Н.С., Тищенко А.Л. и др. Уровень цитокинов в разные фазы менструального цикла в вагинальных секретах здоровых и ВПГ-инфицированных женщин. Клиническая дерматология и венерология. 2012; 10 (5): 26–30
[Zaitseva L.G., Sergeeva N.S., Tishchenko A.L. et al. Cytokine levels in vaginal secretions of healthy and herpes simplex virus-infected women in different phases of menstrual cycle. Clinical dermatology and venerology 2012; 10 (5): 26–30 (in Russian)].
47. Ukibe NR, Ukibe SN, Onwubuya EI et al. Possible impact of variations in some Cytokine levels during menstrual cycle in women of reproductive age infected with Pulmonary Tuberculosis at Nnewi, Nigeria’. Clin Investig (Lond) 2018; 08 (02). DOI: 10.4172/Clinical-Investigation.1000130
48. Анциферов М.Б., Аронов Л.С., Белевский А.С. и др. Клинический протокол лечения больных новой коронавирусной инфекцией (COVID-19), находящихся на стационарном лечении в медицинских организациях государственной системы здравоохранения города Москвы. Под ред. А.И. Хрипуна. М.: ГБУ «НИИОЗММ ДЗМ», 2020
[Antsiferov M.B., Aronov L.S., Belevsky A.S. et al. Clinical Protocol of Treatment of Patients with a New Coronavirus Infection (COVID-19), which are hospitalised and are treated in medical organizations of the state health system of Moscow. Ed. by A.I. Khripun. Moscow: GBU "NIIOZMM DZM", 2020 (in Russian)].
49. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 12 (21.09.2021) [Temporary clinical recommendations. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 12 (21.09.2021) (in Russian)].
50. Sakakura M, Takebe K, Nakagawa S. Inhibition of Luteinizing Hormone Secretion Induced by Synthetic LRH by Long-term Treatment with Glucocorticoids in Human Subjects. J Clin Endocrinol Metab 1975; 40 (5): 774–9. DOI: 10.1210/jcem-40-5-774
51. Gore AC, Attardi B, DeFranco DB. Glucocorticoid repression of the reproductive axis: effects on GnRH and gonadotropin subunit mRNA levels. Mol Cell Endocrinol 2006; 256 (1e2): 40e8. DOI: 10.1016/j.mce.2006.06.002
52. Tetsuka M, Milne M, Simpson GE et al. Expression of 11beta-hydroxysteroid dehydrogenase, glucocorticoid receptor, and mineralocorticoid receptor genes in rat ovary. Biol Reprod 1999; 60 (2): 330e5. PubMed PMID: 9915998.
53. Li R, Yin T, Fang F et al. Potential risks of SARS-CoV-2 infection on reproductive health. Reprod Biomed Onlin. 2020; 41(1): 89–95. DOI: 10.1016/j.rbmo.2020.04.018
54. Парфёнова Я.А., Шибельгут Н.М., Артымук Н.В. Влияние новой коронавирусной инфекции COVID-19 на репродуктивное здоровье женщин. Мать и Дитя в Кузбассе. 2021; 3 (86): 36–40. DOI: 10.24412/26867338202133640
[Parfyonova Y.A., Shibelgut N.M., Artymuk N.V. The impact of the new coronavirus infection COVID-19 on the reproductive health of women. Mother and Child in Kuzbass 2021; 3 (86): 36–40 DOI: 10.24412/26867338202133640 (in Russian)].
55. Boonyawat K, Lensing AWA, Prins MH et al. Heavy menstrual bleeding in women on anticoagulant treatment for venous thromboembolism: Comparison of high- and low-dose rivaroxaban with aspirin. Res Pract Thromb Haemost 2021; 5 (2): 308–13. DOI: 10.1002/rth2.12474
56. De Crem N, Peerlinck K, Vanassche T et al. Abnormal uterine bleeding in VTE patients treated with rivaroxaban compared to vitamin K antagonists. Thromb Res 2015; 136 (4): 749–53. DOI: 10.1016/j.thromres.2015.07.030
57. Samuelson Bannow B. Management of heavy menstrual bleeding on anticoagulation. Hematology 2020; 2020 (1): 533–7. DOI: 10.1182/hematology.2020000138
58. Barsom SH, Mansfield PK, Koch PB et al. Association between psychological stress and menstrual cycle characteristics in perimenopausal women. Womens Health Issues 2004; 14 (6): 235–41. DOI: 10.1016/j.whi.2004.07.006
59. Abu Helwa HA, Mitaeb AA, Al-Hamshri S, Sweileh WM. Prevalence of dysmenorrhea and predictors of its pain intensity among Palestinian female university students. BMC Womens Health 2018; 18 (1): 18. DOI: 10.1186/s12905-018-0516-1
60. Ibrahim NK, AlGhamdi MS, Al-Shaibani AN et al. Dysmenorrhea among female medical students in King Abdulaziz University: Prevalence, Predictors and outcome. Pak J Med Sci 2015; 31 (6): 1312–7. DOI: 10.12669/pjms.316.8752
61. Morales-Carmona F, Pimentel-Nieto D, Bustos-López H. Percepción del ciclo menstrual y malestar psicológico en una muestra de mujeres mexicanas [Menstrual cycle perception and psychological distress in a sample of Mexican women]. Rev Invest Clin 2008; 60 (6): 478–85. PMID: 19378834
62. Warner P, Bancroft J. Factors related to self-reporting of the pre-menstrual syndrome. Br J Psychiatry 1990; 157: 249–60. DOI: 10.1192/bjp.157.2.249
63. Fenster L, Waller K, Chen J et al. Psychological stress in the workplace and menstrual function. Am J Epidemiol 1999; 149 (2): 127–34. DOI: 10.1093/oxfordjournals.aje.a009777. Erratum in: Am J Epidemiol 1999; 149 (7): 686. PMID: 9921957
64. Ossewaarde L, Hermans EJ, van Wingen GA et al. Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle. Psychoneuroendocrinology 2010; 35 (1): 47–55. DOI: 10.1016/j.psyneuen.2009.08.011
65. Hans Selye Stress in Health and Disease 1976 eBook. ISBN: 9781483192215
66. Nicoletti I, Filipponi P, Sfrappini M et al. Catecholamines and pituitary function. I. Effects of catecholamine synthesis inhibition and subsequent catecholamine infusion on gonadotropin and prolactin serum levels in normal cycling women and in women with hyperprolactinemic amenorrhea. Horm Res 1984; 19 (3): 158–70. DOI: 10.1159/000179883
67. Melmed S, Auchus RJ, Goldfine AB et al. Williams Textbook of Endocrinology. 14th edition. 2019.
68. Whitacre FE. War amenorrhea. J Am Med Assoc 1944; 124 (7): 399. DOI: 10.1001/jama.1944.02850070001001
69. Hannoun AB, Nassar AH, Usta IM et al. Effect of war on the menstrual cycle. Obstet Gynecol 2007; 109 (4): 929–32. DOI: 10.1097/01.AOG.0000257170.83920.de
70. Liu X, Yang Y, Yuan P et al. A study of the relationship between mental health and menstrual abnormalities in female middle school students from postearthquake Wenchuan. Biosci Trends 2010; 4 (1): 4-8. PMID: 20305338
71. Salari N, Hosseinian-Far A, Jalali R et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Global Health 2020; 16 (1): 57. DOI: 10.1186/s12992-020-00589-w
72. Who.int [Internet]. WHO. World-health-organization coronavirus disease (COVID-19) [cited 2021 Dec 15]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
73. Gov.uk [Internet]. Medicines and Healthcare Products Regulatory Agency. Coronavirus vaccine—weekly summary of yellow card reporting [cited 2022 Jan 28]. Available from: https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-reactions/coronaviru...
74. Male V. Are covid-19 vaccines safe in pregnancy? Nat Rev Immunol 2021; 21: 200–1. DOI: 10.1038/s41577-021-00525-y
75. Morris RS. SARS-CoV-2 spike protein seropositivity from vaccination or infection does not cause sterility. F&S Reports 2021; 2 (3): 253–5. DOI: 10.1016/j.xfre.2021.05.010
76. Orvieto R, Noach-Hirsh M, Segev-Zahav A et al. Does mRNA SARS-CoV-2 vaccine influence patients’ performance during IVF-ET cycle? Reprod Biol Endocrinol 2021; 19: 69. DOI: 10.1186/s12958-021-00757-6
77. Bentov Y, Beharier O, Moav-Zafrir A et al. Ovarian follicular function is not altered by SARS-Cov-2 infection or BNT162b2 mRNA Covid-19 vaccination. medRxiv 2021: 2021.04.09.21255195. [Preprint.] DOI: 10.1101/2021.04.09.21255195
78. Safrai M, Rottenstreich A, Herzberg S et al. Stopping the misinformation: BNT162b2 COVID-19 vaccine has no negative effect on women’s fertility. medRxiv 2021: 2021.05.30.21258079 [Preprint]. DOI: 10.1101/2021.05.30.21258079
79. Gov.uk [Internet]. Medicines and Healthcare Products Regulatory Agency. COVID-19 vaccines: updates for August 2021 [cited 2021 Dec 15]. Available from: https://www.gov.uk/drug-safety-update/covid-19-vaccines-updates-for-august-2021
80. Male V. Menstrual changes after covid-19 vaccination. BMJ 2021; 41 (8): n2211. DOI: 10.1136/bmj.n2211
81. Hopkinsmedicine.org [Internet]. COVID-19 NEWS: Study to Investigate Impacts of COVID Vaccines on Menstruation [cited 2021 Dec 15]. Available from: https://www.hopkinsmedicine.org/news/newsroom/news-releases/covid-19-news-study-to-investigate-impacts-of-covid-vaccines-on-menstruation
82. Karagiannis A, Harsoulis F. Gonadal dysfunction in systemic diseases. Eur J Endocrinol 2005; 152 (4): 501–13. DOI: 10.1530/eje.1.01886. PMID: 15817904.
83. Ding T, Wang T, Zhang J et al. Analysis of Ovarian Injury Associated With COVID-19 Disease in Reproductive-Aged Women in Wuhan, China: An Observational Study. Front Med (Lausanne) 2021; 8: 635255. DOI: 10.3389/fmed.2021.635255
84. Demir O, Sal H, Comba C. Triangle of COVID, anxiety and menstrual cycle. J Obstet Gynaecol (Lahore) 2021; 41 (8): 1257–61. DOI: 10.1080/01443615.2021.1907562
85. Ozimek N, Velez K, Anvari H, Butler L, Goldman KN, Woitowich NC. Impact of Stress on Menstrual Cyclicity During the Coronavirus Disease 2019 Pandemic: A Survey Study. J Women’s Heal 2022; 31 (1): 84–90. DOI: 10.1089/jwh.2021.0158
86. Nguyen BT, Pang RD, Nelson AL et al. Detecting variations in ovulation and menstruation during the COVID-19 pandemic, using real-world mobile app data. PLoS ONE 2021; 16 (10): e0258314. DOI: 10.1371/journal.pone.0258314