Почему применение ингибитора НГЛТ-2/НГЛТ-1 канаглифлозина может иметь дополнительные гликемические и негликемические преимущества у пациентов с сахарным диабетом 2-го типа?

Демидова Т.Ю., Кочина А.С. Почему применение ингибитора НГЛТ-2/НГЛТ-1 канаглифлозина может иметь дополнительные гликемические и негликемические преимущества у пациентов с сахарным диабетом 2-го типа? FOCUS Эндокринология. 2021; 3: 71–76. DOI: 10.47407/ef2021.2.3.0038

Demidova T.Y., Kochina A.S. Why can the use of Canagliflozin, the SGLT1/SGLT2 inhibitor, have additional glycemic and non-glycemic benefits in patients with type 2 diabetes mellitus? FOCUS Endocrinology. 2021; 3: 71–76. DOI: 10.47407/ef2021.2.3.0038
В статье представлен обзор литературы на тему роли натрий-глюкозного котранспортера 1 типа (НГЛТ-1) в различных тканях здорового организма, а также в организме пациентов с сахарным диабетом 1 и 2 типа, хронической почечной недостаточностью, хронической сердечной недостаточностью, ожирением. Рассмотрены механизмы действия НГЛТ-1 на биохимическом уровне, приведены результаты клинических исследований ингибирования НГЛТ-1 на примере канаглифлозина – ингибитора натрий-глюкозного котранспортера 2 типа с дополнительной активностью в отношении  НГЛТ-1. 

Ключевые слова: сахарный диабет, гипергликемия, ожирение, ингибитор натрий-глюкозного котранспортера 1 типа, канаглифлозин.
Демидова Татьяна Юльевна - д-р мед. наук, проф., зав. каф. эндокринологии лечебного факультета ФГАОУ ВО «РНИМУ им. Н.И. Пирогова». E-mail: t.y.demidova@gmail.com; ORCID: 0000-0001-6385-540X; eLIBRARY.RU SPIN: 9600-9796; Scopus Author ID: 7003771623
Кочина Анна Сергеевна - аспирант каф. эндокринологии лечебного факультета, ФГАОУ ВО «РНИМУ им. Н.И. Пирогова». E–mail: anna_kochina_@mail.ru
1. Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med 2007; 261(1): 32–43. DOI: 10.1111/j.1365-2796.2006.01746.x 
2. Schultz SG, Curran PF. Coupled transport of sodium and organic solutes. Phys-iol Rev 1970; 50(4): 637–718. DOI: 10.1152/physrev.1970.50.4.637
3. Banerjee SK, McGaffin KR, Pastor–Soler NM, Ahmad F. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res 2009; 84(1): 111–8. DOI: 10.1093/cvr/cvp190
4. Zhou L, Cryan EV, D'Andrea MR et al. Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). J Cell Biochem 2003; 90(2): 339–46. DOI: 10.1002/jcb.10631
5. Di Franco A, Cantini G, Tani A et al. Sodium-dependent glucose transporters (SGLT) in human ischemic heart: A new potential pharmacological target. Int J Cardiol 2017; 243: 86–90. DOI: 10.1016/j.ijcard.2017.05.032. Epub 2017 May
9. PMID: 28526540.
6. Kondo H, Akoumianakis I, Badi I et al. Effects of canagliflozin on human my-ocardial redox signalling: clinical implications. Eur Heart J 2021: ehab420. DOI: 10.1093/eurheartj/ehab420
7. Dyer J, Wood IS, Palejwala A et al. Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol 2002; 282: G241–8.
8. Lambert R, Srodulski S, Peng X et al. Intracellular Na+ Concentration ([Na+]i) Is Elevated in Diabetic Hearts Due to Enhanced Na+–Glucose Cotransport. J Am Heart Assoc 2015; 4(9): e002183. DOI: 10.1161/JAHA.115.002183
9. Cefalu WT, Leiter LA, Yoon KH et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with met-formin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013; 382(9896): 941–50. DOI: 10.1016/S0140–6736(13)60683–2
10. Heerspink HJ, Desai M, Jardine M et al. Canagliflozin Slows Progression of Re-nal Function Decline Independently of Glycemic Effects. J Am Soc Nephrol 2017; 28(1): 368–75. DOI: 10.1681/ASN.2016030278
11. Yale JF, Bakris G, Cariou B et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2013; 15(5): 463–73. DOI: 10.1111/dom.12090
12. Lin CJ, Pan CF, Chuang CK et al. p-Cresyl sulfate is a valuable predictor of clini-cal outcomes in pre-ESRD patients. Biomed Res Int 2014; 2014: 1–7. DOI: 10.1155/ 2014/526932
13. Mishima E, Fukuda S, Mukawa C et al. Evaluation of the impact of gut micro-biota on uremic solute accumulation by a CE-TOFMS-based metabolomics ap-proach. Kidney Int 2017; 92: 634 –45. DOI: 10.1016/j.kint.2017.02.011
14. Mishima E, Fukuda S, Kanemitsu Y et al. Canagliflozin reduces plasma uremic toxins and alters the intestinal microbiota composition in a chronic kidney dis-ease mouse model. Am J Physiol Renal Physiol 2018; 315(4): F824–F833. DOI: 10.1152/ajprenal.00314.2017
15. Polidori D, Sha S, Mudaliar S et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care 2013; 36(8): 2154–61. DOI: 10.2337/dc12–2391
16. Rodbard HW, Peters AL, Slee A et al. The Effect of Canagliflozin, a Sodium Glu-cose Cotransporter 2 Inhibitor, on Glycemic End Points Assessed by Continuous Glucose Monitoring and Patient-Reported Outcomes Among People With Type 1 Diabetes. Diabetes Care 2017; 40(2): 171–80. DOI: 10.2337/dc16–1353

17. Hira T, Koga T, Sasaki K, Hara H. Canagliflozin potentiates GLP-1 secretion and lowers the peak of GIP secretion in rats fed a high-fat high-sucrose diet. Biochem Biophys Res Commun 2017; 492(2): 161–5. DOI: 10.1016/j. bbrc.2017.08.031
18. Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3(3): 153–65. DOI: 10.1016/j.cmet.2006.01.004
19. Miyawaki K, Yamada Y, Ban N, Ihara Yet al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002; 8(7): 738–42. DOI: 10.1038/nm727
20. Stenlöf K, Cefalu WT, Kim KA et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 2013; 15(4): 372–82. DOI: 10.1111/dom.12054
21. Devineni D, Vaccaro N, Polidori D et al. Single- and multiple–dose pharmacoki-netics and pharmacodynamics of canagliflozin, a selective inhibitor of sodium glucose co–transporter 2, in healthy participants. Int J Clin Pharmacol Ther 2015; 53(2): 129–38. DOI: 10.5414/CP202218
22. Sha S, Polidori D, Farrell K et al. Pharmacodynamic differences between canagliflozin and dapagliflozin: results of a randomized, double-blind, crossover study. Diabetes Obes Metab. 2015; 17(2): 188–97. DOI: 10.1111/dom.12418